Abstract

SUMMARYIn this paper, we present a theoretical study on the control of a compass gait walker using energy regulation between steps. We use a return map to relate the mid-stance robot kinetic energy between steps with two control inputs, namely, foot placement and ankle push-off. We show that by regulating robot kinetic energy between steps using the two control inputs, we are able to (1) generate a wide range of walking speeds and stride lengths, including average human walking; (2) cancel the effect of external disturbance fully in a single step (dead-beat control); and (3) switch from one periodic gait to another in a single step. We hope that insights from this control methodology can help develop robust controllers for practical bipedal robots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.