Abstract

AbstractFast and accurate positioning and swing minimization of heavy loads in crane manipulation are demanding and, at the same time, conflicting tasks. Accurate load positioning is primarily limited by the existence of a nonlinear friction effect, especially in the low speed region. In this paper the authors propose a new control scheme for 3D tower crane, that consists of a tensor product model transformation based nonlinear feedback controller, with an additional neural network based friction compensator. Tensor product based controller is designed using linear matrix inequalities utilizing a parameter varying Lyapunov function. Neural network parameters adaptation law is derived using Lyapunov stability analysis. The simulation and experimental results on a 3D laboratory crane model are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.