Abstract

This Note is devoted to study the control, observation and polynomial decay of a linearized 1-d model for fluid–structure interaction, where a wave and a heat equation evolve in two bounded intervals, with natural transmission conditions at the point of interface. These conditions couple, in particular, the heat unknown with the velocity of the wave solution. The controllability and observability of the system through the wave component are derived from sidewise energy estimate and Carleman inequalities. As for the control and observation through the heat component, we need to develop first a careful spectral high frequency analysis for the underlying semigroup, which yields a new Ingahm-type inequality. It is shown that the controllable/observable subspace for both cases are quite different. Also, we obtain a sharp polynomial decay rate for the energy of smooth solutions. To cite this article: X. Zhang, E. Zuazua, C. R. Acad. Sci. Paris, Ser. I 336 (2003).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.