Abstract

A possible role for cellular energy metabolism in the control of the blood clotting mechanism has been shown. High-energy phosphate was found to strongly inhibit the recalcification time of plasma prepared with siliconized or glass surfaces. The nucleotide, adenosine triphosphate, in crystalline form and chromatographically pure, will inhibit or completely prevent coagulation in vitro. Reactivity is based primarily on the high-energy phosphate linkage and secondarily upon the nucleoside, adenosine. The principal site of action for ATP is on an unidentified precursor of thromboplastin. Available evidence indicates an important role for energy metabolism in the cellular mechanisms which effect a control over thromboplastin generation and its possible thrombotic and arteriosclerotic sequelae. cellular control mechanisms; blood fluidity; thrombosis arteriosclerosis; aging Submitted on July 1, 1963

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call