Abstract

The trailing effect caused by the back diffusion (BD) of contaminants in low-permeability zones (LPZs), which prolongs remediation time and increases remediation costs, has caused widespread concern. In this study, the BD of trichloroethylene (TCE) from the LPZ to the high-permeability zone (HPZ) was determined using flow cell experiments. The anomalous variance in the BD flux of the TCE—spanning 2–4 times the deviation under identical experimental conditions, attracted our attention. To determine the cause of this aberrant behavior, a micro computed tomography (micro-CT) characterization of the flow cell was conducted, which revealed significant microstructural disparities in the LPZ. The study found that the pore connectivity of LPZs determines the efficiency of BD and that LPZs with different porosities have different sensitivities to connectivity. The pore shape complexity indicates the possibility of BD retardation, and remediation is more difficult for these types of LPZs. Changing the structure of LPZs to improve their remediation efficiency may be a new research topic. Notably, correcting the model parameters through microstructural characterization significantly refined the prediction accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call