Abstract

Abstract Upstream vortex has a significant effect on the secondary flow structure of the downstream turbine in the stage environment. This study investigates the secondary flow structure with non-axisymmetric endwall profiling (NAEW) under the interaction of co-rotating incoming vortex (Vic). A half-delta wing vortex generator is utilized to model Vic. The turbine cascade case which exhibited maximum reduction of the cascade loss with NAEW under no incoming vortex is studied. The mechanism of loss reduction with NAEW under the interaction of Vic is analysed. Vic could decrease the secondary flow near the endwall region by affecting the horseshoe vortex transport in the cascade. However, its loss reduction was lower than the loss increments of Vic itself. The arrival of Vic at the leading edge of the cascade increased the strength of the horseshoe vortex, resulting in a significant increase in loss. Under the interaction of Vic, NAEW decreased the blade loading near endwall region, which resulted in the reduction of cascade loss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call