Abstract

Fucoxanthin chlorophyll (Chl) a/c-binding protein (FCP) is a unique light-harvesting antenna in diatoms, which are photosynthesizing algae ubiquitous in aquatic environments. However, it is unknown how excitation energy is trapped and quenched in a complex consisting of photosystem II and FCP (PSII-FCPII complex). Here, we report the control mechanism of excitation energy transfer in the PSII-FCPII complexes isolated from a diatom, Chaetoceros gracilis, as revealed by picosecond time-resolved fluorescence spectroscopy. The results showed that Chl-excitation energy is harvested in low-energy Chls near/within FCPII under the 77 K conditions, whereas most of the energy is trapped in reaction center Chls in PSII under the 283 K conditions. Surprisingly, excitation energy quenching was observed in a part of PSII-FCPII complexes with the time constants of hundreds of picosecond, thus indicating the large contribution of FCPII to energy trapping and quenching. On the basis of these results, we discuss the light-harvesting strategy of diatoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.