Abstract
This research paper investigated the dynamics of malaria transmission in Rwanda using the nonlinear forces of infections which are included in SEIR-SEI mathematical model for human and mosquito populations. The mathematical modeling of malaria studies the interaction among the human and mosquito populations in controlling malaria transmission and eventually eliminating malaria infection. This work investigates the optimal control strategies for minimizing the rate of malaria transmission by applying three control variables through Caputo fractional derivative. The optimal control problems for malaria model found the control parameters which minimize infection. The numerical simulation showed that the number of exposed and infected people and mosquito population are decreased due to the control strategies. Finally, this work found out that the transmission of malaria in Rwanda can be minimized by using the combination of controls like Insecticide Treated bed Nets (ITNs), Indoor Residual Spray (IRS) and Artemisinin based Combination Therapies (ACTs).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Rwanda Journal of Engineering, Science, Technology and Environment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.