Abstract

The problem of mapping algorithms onto regular arrays has received great attention in the past. Results are available on the mapping of regular algorithms onto systolic or wavefront arrays. On the other hand, many algorithms that can be implemented on parallel architectures are not completely regular but are composed of a set of regular subalgorithms. Recently, a class of configurable processor arrays has been proposed that allows the efficient implementation of piecewise regular algorithms. In contrary to pure systolic of wavefront arrays they are distinguished by a dynamic configuration structure. The known trajectories, however, cannot be applied to the design of configurable processor arrays because the functions of the procesing elements and the interconnection structure are time- and space-dependent. In this paper, a systematic procedure is introduced that allows the efficient design of configurable processor arrays including the specification of the processing elements and the generation of control signals. Control signals are propagated through the processor array. The proposed design trajectory can be used for the design of regular arrays or configurable arrays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.