Abstract

The collective behaviour observed in many social insects and animals provides the inspiration for the development of multi-vehicle control systems. The distributed nature of the multi-vehicle control problem enhances the performance of the collective system along the dimensions of scalability, robustness, and fault tolerance. The distributed/decentralized nature of the cooperative control task introduces many sub-problems often associated with network control design. In this paper, a survey of recent results in the field of cooperative control for multi-vehicle systems is presented. Various applications are discussed and presented in a mathematical framework to illustrate the major features of the cooperative control problem. Theoretical results for various cooperative control strategies are presented by topic and applied to the multi-vehicle applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.