Abstract

To enhance safety and traffic efficiency, stability of a mixed human and connected cruise control (CCC) system is studied. The authors consider individual vehicle platoons, in which the tail CCC vehicle receives feedback from multiple human-driven vehicles ahead via vehicle-to-vehicle communications, with the objective of stability analysis and feedback control design. To deal with this, the transfer function theory is used. Simulations are also performed to evaluate impacts of the mixed human and CCC system on safety and traffic efficiency. Results show that the output bounds of the CCC feedback coefficients can be appropriately designed to keep local individual vehicle platoons stable for all possible vehicle speeds. The feedback coefficient has a larger design range and the required lower bound value decreases as the feedback length increases. Additionally, the system design would improve traffic safety and efficiency even at lower CCC vehicle penetration rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.