Abstract
We present a general framework for risk semantics on Signal Temporal Logic (STL) specifications for stochastic dynamical systems using axiomatic risk theory. We show that under our recursive risk semantics, risk constraints on STL formulas can be expressed in terms of risk constraints on atomic predicates. We then show how this allows a (stochastic) STL risk constraint to be transformed into a risk-tightened deterministic STL constraint on a related deterministic nominal system, enabling the application of existing STL methods. For affine predicate functions and a (coherent) Distributionally Robust Value at Risk measure, we show how risk constraints on atomic predicates can be reformulated as tightened deterministic affine constraints. We demonstrate the framework using a Model Predictive Control (MPC) design with an STL risk constraint.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.