Abstract

This work presents the design and implementation results of a model predictive control strategy used to control the pulp level of a Rougher flotation circuit in a mine located in the third region of Chile, which is composed by five flotation banks. The strategy considers a state space representation to model the pulp level of each bank (with a multiple input - single output model), which is obtained by a system identification procedure and uses a Kalman filter as a state estimator. To solve the optimization problem that calculates the control law, a genetic algorithm based optimization tool is used. Experimental data is used to show the results of the proposed control strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.