Abstract

Control of nitrogenase and bacteriochlorophyll a (BChl) by light was studied under steady-state conditions with continuous cultures of Rhodobacter capsulatus B10S supplied with malate and growth-limiting amounts of ammonium. Consumption of malate and, correspondingly, the C/N ratio at which malate and ammonium were consumed increased when illumination was increased from 3 to approximately 20 klx and became constant at higher illuminations of up to 40 klx. Essentially the same kinetics were observed with respect to nitrogenase activity of cells, contents of nitrogenase polypeptides, and nifH promoter activity. Substrate consumption was half-maximal at 8 klx and was independent of the presence of nitrogenase. Therefore, it is concluded that light controls the C/N ratio (a quantitative measure of the nitrogen status of cells), which in turn is involved in the control of nitrogenase at the level of nif promoter activity. Post-translational regulation of nitrogenase activity by ADP-ribosylation was not observed under steady-state conditions, but it took place when illumination was suddenly decreased to the range where malate consumption and, consequently, the C/N ratio decreased. Irrespective of the presence or absence of nitrogenase, specific BChl contents of the cultures were constant above 20 klx, and they increased at lower illuminations. These results do not confirm a recently proposed link between nitrogen fixation and photosynthesis as represented by BChl.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.