Abstract
This article describes a new method to perform fault detection and isolation for a closed-loop-controlled autonomous aircraft. This vehicle is equipped with standard sensors and actuators, and its dynamics is non-linear. It is assumed that a guidance law and a control loop have been designed to achieve a given mission. The diagnosis method uses the resulting control objectives to generate residuals indicative of the presence of faults. Two classical guidance laws are considered, leading to different control constraints and diagnosis signals. A structural sensitivity analysis shows that all sensor and actuator faults can be detected and all sensor faults isolated, for both laws. The fault diagnosis procedure does not require the costly integration of the model of the system, and the closed-loop scheme makes it robust to model uncertainty. Realistic simulation results with strong model and measurement uncertainty demonstrate the potential of the approach. A theoretical analogy with observer-based fault diagnosis is also derived.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.