Abstract

A suitable control architecture for connected vehicle platoons may be seen as a promising solution for today's traffic problems, by improving road safety and traffic flow, reducing emissions and fuel consumption, and increasing driver comfort. This paper provides a comprehensive overview concerning the defining levels of a general control architecture for connected vehicle platoons, intending to illustrate the options available in terms of sensor technologies, in-vehicle networks, vehicular communication, and control solutions. Moreover, starting from the proposed control architecture, a solution that implements a Cooperative Adaptive Cruise Control (CACC) functionality for a vehicle platoon is designed. Also, two control algorithms based on the distributed model-based predictive control (DMPC) strategy and the feedback gain matrix method for the control level of the CACC functionality are proposed. The designed architecture was tested in a simulation scenario, and the obtained results show the control performances achieved using the proposed solutions suitable for the longitudinal dynamics of vehicle platoons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call