Abstract

Biogeography-based optimization algorithm (BBO) is a relatively new optimization technique which has been shown to be competitive to other biology-based algorithms. However, there is still an insufficiency in BBO regarding its migration operator, which is good at exploitation but poor at exploration. To address this concerning issue, we propose an improved BBO (IBBO) by using a modified search strategy to generate a new mutation operator so that the exploration and exploitation can be well balanced and then satisfactory optimization performances can be achieved. In addition, to enhance the global convergence, both opposition-based learning methods and chaotic maps are employed, when producing the initial population. In this paper, the proposed algorithm is applied to control and synchronization of discrete chaotic systems which can be formulated as high-dimension numerical optimization problems with multiple local optima. Numerical simulations and comparisons with some typical existing algorithms demonstrate the effectiveness and efficiency of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.