Abstract

This paper studies the local exact controllability and the local stabilization of the semilinear Schrödinger equation posed on a product of n intervals (n ≥ 1). Both internal and boundary controls are considered, and the results are given with periodic (resp. Dirichlet or Neumann) boundary conditions. In the case of internal control, we obtain local controllability results which are sharp as far as the localization of the control region and the smoothness of the state space are concerned. It is also proved that for the linear Schrödinger equation with Dirichlet control, the exact controllability holds in H-1(Ω) whenever the control region contains a neighborhood of a vertex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.