Abstract

The ability to stabilize and control the attachment of cells on the surfaces of a variety of inorganic materials is important for the development of biomedical devices and sensors. An important intermediate step is the functionalization of semiconducting surfaces with a self-assembled monolayer (SAM) with an appropriate surface termination to interact with proteins. The stability of such SAMs is critical to withstanding subsequent processing and measurement conditions (e.g. long exposure to a buffer solution) to avoid artifacts resulting from such deterioration during electrical measurements. This work highlights the importance of surface cleaning and SAM chain length by comparing two commonly used short alkyl chains, aminopropyltriethoxysilane (APTES) or 3-(trimethoxysilyl)propyl aldehyde (C4-ald) molecules, with their long-chain counterparts, amino-undecilenyltriethoxysilane (AUTES) and 11-(triethoxysilyl)undecanal (C11-ald). Using IR spectroscopy, spectroscopic ellipsometry, and electrical measurements, a cleaning method is developed, based on a short room temperature (RT) SC-1 treatment, to remove photoresist without degrading device performance as is the case with currently used oxygen plasma methods. The spectroscopic and electrical measurements also show that short-chain SAMs, typically used for pH- or bio-sensing, do not have the stability suitable for biosensor environments. In contrast, long-chain SAMs display much higher stability and can be reproducibly grafted. These findings are the basis for a reliable preparation and robust operation of biosensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call