Abstract

The modular multilevel converter (MMC) is increasingly becoming popular for multi-MW drive systems. One of the main technical challenges associated with the operation of MMC for adjustable-speed drives is the large magnitude of submodule (SM) capacitor voltage ripple under constant-torque low-speed operation. This paper proposes two new control strategies to reduce the magnitude of the SM capacitor voltage ripple in the MMC-based adjustable-speed drive systems under constant-torque low-speed operation. The proposed control strategies are based on injecting a square-wave common-mode voltage at the ac-side and a circulating current within the phase-legs to attenuate the low-frequency components of the SM capacitor voltages. The frequency spectrum of the injected circulating current consists of components in the vicinity of either the common-mode frequency or the common-mode frequency and third harmonic of the common-mode frequency. This paper also provides: i) a theoretical comparison of the proposed control strategies with the existing ones; ii) a controller design methodology to systematically determine the controller gains of the proposed control strategies; and iii) a theoretical proof of stability of the proposed control strategies and their design methodology based on Lyapunov analysis of singularly perturbed nonlinear non-autonomous systems. A set of experimental results for various case studies on a laboratory-scale prototype are provided to support the theoretical proof of stability of the proposed control strategies and their design methodology, and to show the superior performance of the proposed strategies over the existing strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.