Abstract

In this paper, fault tolerant control (FTC) system is developed for lateral vehicle dynamics by combining static output feedback control and sliding mode observers for improving vehicle handling and stability under sensors faults. The system consists of three blocks: fault detection and isolation (FDI) block, a static output feedback controller block and a switcher block. The nonlinear two degrees of freedom vehicle motion (bicycle model) is described by a Takagi-Sugeno (T-S) fuzzy model. The strategy of the FDI method is based on a bank of observers, each one is constructed using sliding mode design techniques to estimate the system state vector. Thus the diagnostic signal-residuals are generated by the comparison of measured and estimated outputs and the faulty sensor is isolated. Simulations demonstrate that the vehicle maintains acceptable performance after either set of yaw rate sensor and lateral velocity sensor has failed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.