Abstract

This research presents an approach for modeling and control of a hydrogen production plant based in steam reforming of methane (SRM). Many studies in the literature have established some important hydrogen production plant information related to sizing and optimization. This research shows a dynamic model integrated with an industrial control system, which will be able to represent the unified plant data for process variables (temperature, pressure, size, etc.). The plant was optimized using surface response methodology (SRM) to approach a maximum value of hydrogen and a minimum carbon monoxide concentration. The dynamic plant model exhibited high interactions and nonlinear behavior. Hence, a Model predictive control (MPC) strategy was design for the dynamic case, with very good results due to its centralized control structure. Steady-state and dynamic simulations were developed using HYSYS 2006.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.