Abstract

Mean field theory has raised a lot of interest in the recent years (see in particular the results of Lasry-Lions in 2006 and 2007, of Gueant-Lasry-Lions in 2011, of Huang-Caines-Malham in 2007 and many others). There are a lot of applications. In general, the applications concern approximating an infinite number of players with common behavior by a representative agent. This agent has to solve a control problem perturbed by a field equation, representing in some way the behavior of the average infinite number of agents. This approach does not lead easily to the problems of Nash equilibrium for a finite number of players, perturbed by field equations, unless one considers averaging within different groups, which has not been done in the literature, and seems quite challenging. In this paper, the authors approach similar problems with a different motivation which makes sense for control and also for differential games. Thus the systems of nonlinear partial differential equations with mean field terms, which have not been addressed in the literature so far, are considered here.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.