Abstract

Implementation of a new modular AC-AC matrix converter and its control system are described. The converter consists of a matrix connection of capacitor-clamped H-bridge switch cells. The AC output of each switch cell can assume three voltage levels during conduction. Input and output three-phase AC waveforms are synthesized from pulse-width modulation of the DC clamp capacitor voltages. The space-vector modulation approach can be adapted to control this converter. A control algorithm is described that can be reduced to an equivalent DC-link converter. This controller is implemented using programmable logic devices and a flash-memory look-up table. Operational waveforms are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.