Abstract

A modular multilevel converter (MMC) is one of the next-generation multilevel converters intended for high- or medium-voltage power conversion without transformers. The MMC is based on cascade connection of multiple bidirectional chopper-cells per leg, thus requiring voltage-balancing control of the multiple floating DC capacitors. However, no paper has made an explicit discussion on voltage-balancing control with theoretical and experimental verifications. This paper deals with two types of pulsewidth-modulated modular multilevel converters (PWM- MMCs) with focus on their circuit configurations and voltage-balancing control. Combination of averaging and balancing controls enables the PWM-MMCs to achieve voltage balancing without any external circuit. The viability of the PWM-MMCs, as well as the effectiveness of the voltage-balancing control, is confirmed by simulation and experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.