Abstract

Horizontal spacing of horizontal extraction gas wells can be designed to achieve a 90% pumping rate of the total generated landfill gas (LFG) from given waste properties (viz: gas permeability, landfill gas generation and non-homogeneity with depth), cover characteristics and vacuum pressure. However, cover characteristics and vacuum pressure are also important design parameters and different combinations of them result in different distributions of gas pressure in the waste, some of which would induce problematic air intrusion while others might pose threat to cover stability. This paper uses the maximum gas pressure directly below cover to distinguish these combinations, and provides the first study of the effects of the above parameters on potential outcomes. The ability of the overlying cover to resist LFG emission from the landfilled waste is suggested not to exceed a critical value, otherwise the maximum gas pressure below it would become at least 1 kPa larger than atmospheric pressure. A design formula for this critical value is proposed with respect to typical values of waste properties, vacuum pressure and the buried depth of horizontal wells in wide ranges. Together with consideration of recovery efficiency, the proposed method can be used to design a horizontal extraction gas collection system and a cover system in better working condition, and to evaluate the maximum gas pressure below cover. These applications are illustrated by a worked example.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call