Abstract

SUMMARYThe Derivative-free nonlinear Kalman Filter is used for developing a robust controller which can be applied to underactuated MIMO robotic systems. The control problem for underactuated robots is non-trivial and becomes further complicated if the robot is subjected to model uncertainties and external disturbances. Using differential flatness theory it is shown that the model of a closed-chain 2-DOF robotic manipulator can be transformed to linear canonical form. For the linearized equivalent of the robotic system it is shown that a state feedback controller can be designed. Since certain elements of the state vector of the linearized system cannot be measured directly, it is proposed to estimate them with the use of a novel filtering method, the so-called Derivative-free nonlinear Kalman Filter. Moreover, by redesigning the Kalman Filter as a disturbance observer, it is shown that one can estimate simultaneously external disturbance terms that affect the robotic model or disturbance terms which are associated with parametric uncertainty. The efficiency of the proposed Kalman Filter-based control scheme is tested in the case of a 2-DOF planar robotic manipulator that has the structure of a closed-chain mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call