Abstract

A novel control evaluation approach for tactical missile is detailed. The characteristics of non-minimum phase and static instability of a tail-controlled tactical missile are presented firstly. Then the frequency-domain controllable analysis is derived. Due to the limitations of traditional stability margins, the vector margin (VM) is introduced and compared with sensitivity function to show their essential relationship. A longitudinal three-loop autopilot is designed to stabilize the non-minimum phase static unstably missile dynamics and used as the baseline for all the tan available linear autopilot topologies given with the identical closed-loop characteristic equation and time-domain step response. Then vector margin method is adopted to compute and evaluate the stability of all available autopilots. The analysis and computation results show that the vector margin method could give better evaluation on system stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.