Abstract
In this study, immunoinformatics strategies were used to design a subunit vaccine against malaria from immunogenic regions of three Plasmodium falciparum surface antigens; liver stage antigen 3-C (V750-K1433), merozoite surface antigen 180 truncate-4 (A805-P1093), and merozoite surface protein 10 region 1 (D29-N188). A multi-epitope subunit vaccine construct (VC) was designed from immunodominant B- and T-cell epitopes followed by structure prediction, evaluation, and validation. Toll-like receptors (TLRs) 2 and 4 were docked with the VC. Their complexes’ molecular dynamics, immune stimulation, codon optimization, and in silico cloning of the VC were simulated. The VC is a 49.2 kDa antigenic and nonallergenic protein, comprised of 26% α-helix, 7% β-strand, 66% coil. The immune simulation test showed that the vaccine could provoke adaptive immune responses, and molecular docking tests showed that it interacts strongly with TLR-2 (−945.1 kcal/mol) and TLR-4 (−919.8 kcal/mol) to form complexes of high stability that hardly deform. The guanine-cytosine content and codon adaptation index of the VC were 42.94 and 0.99 after codon optimization. Escherichia coli pET-28a(+) was identified as the best vector for optimal gene expression. In conclusion, the study reveals that the VC shows promising results in neutralizing falciparum malaria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.