Abstract

Pathological angiogenesis is a hallmark of many diseases. Previously, we reported that orphan nuclear receptor TR3/Nur77 was a critical mediator of angiogenesis to regulate tumor growth and skin wound healing via regulating the expression of the junctional proteins and integrins. However, the molecular mechanism, by which TR3/Nur77 regulates angiogenesis is not completely understood. Here, we were the first to find that TR3/Nur77, via its various amino acid fragments, regulated the expression of DLL4 and Jagged 1 in cultured endothelial cells. DLL4 and Jagged1 mediated TR3/Nur77-induced angiogenic responses and signaling molecules, but not the expression of integrins. Instead, integrins regulated the expressions of DLL4 and Jagged1 induced by TR3/Nur77. Further, DLL4, Jagged1 and integrins α1, α2, β3 and β5 were regulated by TR3/Nur77 in animal sepsis models of lipopolysaccharide (LPS)-induced endotoxemia, and cecal ligation and puncture (CLP), in which, TR3/Nur77 expression was significantly and tranciently increased. Mouse survival rates were greatly increased in Nur77 knockout mice bearing both CLP and LPS models. The results elucidated a novel axis of VEGF/histamine ➔ TR3/Nur77 ➔ integrins ➔ DLL4/Jagged1 in angiogenesis, and demonstrated that TR3/Nur77 was an excellent target for sepsis. These studies supported our previous findings that TR3/Nur77 was an excellent therapeutic target, and further our understanding of the molecular mechanism, by which TR3/Nur77 regulated angiogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.