Abstract
Two stochastic programming decision models are presented. In the first one, we use probabilistic constraints, and constraints involving conditional expectations further incorporate penalties into the objective. The probabilistic constraint prescribes a lower bound for the probability of simultaneous occurrence of events, the number of which can be infinite in which case stochastic processes are involved. The second one is a variant of the model: two-stage programming under uncertainty, where we require the solvability of the second stage problem only with a prescribed (high) probability. The theory presented in this paper is based to a large extent on recent results of the author concerning logarithmic concave measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.