Abstract

Using a high-resolution precipitation dataset, the present study detected that the mountainous area of central China (MACA) is a hotspot of ENSO’s impact on the summer rainfall variability. Further analysis suggests that both ENSO and atmospheric forcing make contributions to the summer rainfall variability in MACA. The dominant rainfall-related SST mode features as a seasonal transition from an El Nino-like warming in the preceding winter to a La Nina-like cooling in the following autumn, and it explains about 29% of the total variance of the rainfall during 1951–2018. It indicates that ENSO with a rapid phase transition is responsible for inducing summer rainfall anomalies in MACA. Besides, an upper-level circumglobal wave mode in the Northern Hemisphere during summer also explains about 29% of the summer rainfall variance. Contributions of both the SST and the atmospheric modes have experienced interdecadal changes. The influence of the SST mode gradually increases and plays a dominant role in the recent decades, suggesting that ENSO with a rapid phase transition becomes more important for rainfall prediction in MACA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call