Abstract

Quantum biology is the quantum mechanical study of electrons in molecules of biological interest. This requires the solution of problems involving many electrons. Approximation methods are therefore necessary and are discussed. The present study, concerned with the mobile electrons in riboflavin (FMN) and its radicals (FMN−, FMNH and FMNH2 +), is based on the approximation method, developed by B. Pullman and A. Pullman. The solution of the eigenvalue problems so obtained gives the energy levels of the mobile electron systems involved. The corresponding eigenvectors yield the mobile electronic charges of the atoms of riboflavin radicals which have contributed mobile electrons. Important differences of the net charge distributions of these radicals are emphasized. The longest wave length of light absorption is calculated from the obtained energy levels and agrees, within the accuracy of the method, with corresponding experimental results. From the appropriate calculated results, electronic assignments are obtained for the experimental transitions involved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call