Abstract
BackgroundThe probiotic bacterium Phaeobacter inhibens strain S4Sm, isolated from the inner shell surface of a healthy oyster, secretes the antibiotic tropodithietic acid (TDA), is an excellent biofilm former, and increases oyster larvae survival when challenged with bacterial pathogens. In this study, we investigated the specific roles of TDA secretion and biofilm formation in the probiotic activity of S4Sm.ResultsMutations in clpX (ATP-dependent ATPase) and exoP (an exopolysaccharide biosynthesis gene) were created by insertional mutagenesis using homologous recombination. Mutation of clpX resulted in the loss of TDA production, no decline in biofilm formation, and loss of the ability to inhibit the growth of Vibrio tubiashii and Vibrio anguillarum in co-colonization experiments. Mutation of exoP resulted in a ~60 % decline in biofilm formation, no decline in TDA production, and delayed inhibitory activity towards Vibrio pathogens in co-colonization experiments. Both clpX and exoP mutants exhibited reduced ability to protect oyster larvae from death when challenged by Vibrio tubiashii. Complementation of the clpX and exoP mutations restored the wild type phenotype. We also found that pre-colonization of surfaces by S4Sm was critical for this bacterium to inhibit pathogen colonization and growth.ConclusionsOur observations demonstrate that probiotic activity by P. inhibens S4Sm involves contributions from both biofilm formation and the production of the antibiotic TDA. Further, probiotic activity also requires colonization of surfaces by S4Sm prior to the introduction of the pathogen.Electronic supplementary materialThe online version of this article (doi:10.1186/s12866-015-0617-z) contains supplementary material, which is available to authorized users.
Highlights
The probiotic bacterium Phaeobacter inhibens strain S4Sm, isolated from the inner shell surface of a healthy oyster, secretes the antibiotic tropodithietic acid (TDA), is an excellent biofilm former, and increases oyster larvae survival when challenged with bacterial pathogens
Differential sensitivities of marine pathogens to TDA We examined the relative sensitivities of three pathogens of marine organisms, V. anguillarum NB10Sm, V. tubiashii RE22Sm, and R. crassostreae CV919Sm, to P. inhibens S4Sm by looking at the inhibition of growth around a colony of S4Sm
The results presented in this study demonstrate that both TDA production and biofilm formation contribute to the probiotic activity of P. inhibens S4Sm
Summary
The probiotic bacterium Phaeobacter inhibens strain S4Sm, isolated from the inner shell surface of a healthy oyster, secretes the antibiotic tropodithietic acid (TDA), is an excellent biofilm former, and increases oyster larvae survival when challenged with bacterial pathogens. We investigated the specific roles of TDA secretion and biofilm formation in the probiotic activity of S4Sm. Infections by pathogenic marine bacteria are a major problem for both the shellfish and finfish aquaculture industries, causing severe disease and high mortality, which seriously affect aquaculture production and cause significant economic loss [1]. D’Alvise et al [12] demonstrated that a different TDA-producing strain of Phaeobacter was able to reduce or eliminate V. anguillarum from a combined liquid-surface system These and other studies strongly suggest that antagonistic interactions by probiotic bacteria against marine pathogens may be useful in protecting commercially important species of shellfish and finfish from infectious disease
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.