Abstract

Transposon-based insertional mutagenesis screens have assessed how disruption of numerous human cytomegalovirus (HCMV) open reading frames (ORFs) impacts in vitro viral replication. Insertional mutagenesis of the HCMV UL30 gene was previously found to substantially inhibit production of viral progeny. However, there are a number of putative UL30-associated ORFs, and it is unclear how they impact viral replication. Here, we report on the contributions of the eight UL30-associated ORFs to infection. We find that deletion of the canonically annotated UL30 ORF substantially reduces production of infectious virus at both high and low multiplicities of infection (MOI). This deletion likely has complex effects on viral replication, as we find that it reduces the expression of neighboring non-UL30-associated ORFs. Mutation of the initiating methionine of the canonical UL30 ORF indicated that it is dispensable for high- and low-MOI infection in the highly passaged AD169 strain, although it is important for low-MOI infection in the less-passaged TB40/E strain. Comutation of eight methionines in the UL30 region results in a low-MOI viral replication defect, as does mutation of the TATA box responsible for the most abundant UL30 transcript, which is found to be necessary for the accumulation of multiple UL30-associated protein isoforms during infection. In total, our data indicate the importance of the UL30-associated ORFs during low-MOI HCMV infection and further highlight the difficulty associated with the functional interrogation of broadly disruptive mutations: e.g., large deletions or transposon insertions.IMPORTANCE Viral genes and their products are the critical determinants of viral infection. Human cytomegalovirus (HCMV) encodes many gene products whose roles during viral infection have not been assessed. Elucidation of the contributions that various HCMV gene products make to infection provides insight into the infectious program, which could potentially be used to limit HCMV-associated morbidity, a major issue during congenital infection and in immunosuppressed populations. Here, we explored the role of HCMV's UL30-associated gene products and found that they are important for HCMV replication. Future work elucidating the mechanisms through which they contribute to viral infection could highlight novel avenues for therapeutic intervention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.