Abstract

Among bacteria, we have previously shown that species that are capable of rapid growth have stronger selection on codon usage than slow growing species, and possess higher numbers of rRNA and tRNA genes. This suggests that fast-growers are adapted for fast protein synthesis. There is also considerable evidence that codon usage is influenced by accuracy of translation, and some authors have argued that accuracy is more important than speed. Here we compare the strength of the two effects by studying the codon usages in high and low expression genes and on conserved and variable sites within high expression genes. We introduce a simple statistical method that can be used to assess the significance and the strength of the two types of bias in the same sets of sequences. We compare our statistical measure of codon bias to the common used codon adaptation index, and show that the new measure is preferable for three reasons for the purposes of this analysis. Across a large sample of bacterial genomes, both effects from speed and accuracy are clearly visible, although the speed effect appears to be much stronger than the accuracy effect and is found to be significant in a larger proportion of genomes. It is also difficult to explain the correlation of codon bias in the high expression genes with growth rates and numbers of copies of tRNA and rRNA genes on the basis of selection for accuracy. Hence we conclude that selection for translational speed is a dominant effect in driving codon usage bias in fast-growing bacteria, with selection for accuracy playing a small supplementary role.

Highlights

  • Translation is the process by which ribosomes synthesize proteins in cells

  • Protein synthesis is essential to all organisms, and cells expend a large amount of energy and time on translation

  • This study was intended as a means to compare selection for translational speed and translational accuracy in the same sequences

Read more

Summary

Introduction

Translation is the process by which ribosomes synthesize proteins in cells. Protein synthesis is essential to all organisms, and cells expend a large amount of energy and time on translation. For single celled organisms, such as bacteria, there is a direct relationship between the rates of cellular processes such as translation and the rate of cell growth and cell division. Improvements in translation should increase the fitness of the organism. One of the main pieces of evidence for translational selection is the observation that the choice of synonymous codons appears to be influenced by selection in many organisms. Synonymous changes in the gene do not affect the resulting protein but can affect the way that the mRNA is translated by the ribosome

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call