Abstract

The cAMP-dependent protein kinase (PKA) transduces signals in the heart initiated by beta(1)-adrenergic, G-protein-coupled receptors after norepinephrine, sympathetic stimulation. Signaling through this pathway results in a characteristic set of cellular responses, including increases in ion fluxes and contractile strength, mobilization of energy stores, and changes in gene expression. Not all receptors that activate adenylate cyclase and increase cAMP levels, however, cause the cardiac myocyte to react in this manner. Research in the field of signal transduction over the last 25 years has addressed this issue of specificity in signaling by diffusable second messengers. PKA is in part targeted to discrete cellular locations by A-kinase anchoring proteins. Through anchoring and formation of multienzyme complexes, specific, localized signal transduction is possible. I discuss in this review recent advances in the understanding of PKA signaling complexes in the cardiac myocyte.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call