Abstract

Abstract In organic electrosynthesis C–C bond formation and functional group interconversion proceed via reactive intermediates that are generated by electron transfer at the anode and cathode. Electron transfer combined with a chemical reaction provides conversions that are not available in non-electrochemical reactions. These are potential selectivity, redox-umpolung, and the substitution of a hydrogen atom for a nucleophile or the addition of two nucleophiles to a double bond in one-pot reactions. Furthermore electrolysis is well suited for oxidation and reduction of functional groups. Electrochemical syntheses need mostly fewer steps, produce less waste, provide a cheaper reagent, require less auxiliaries and allow often an easier scale-up than non-electrochemical syntheses. In addition, they can be conducted at ambient temperature and pressure. All these qualities agree well with the rules of green chemistry. This statement is substantiated with examples of C–C bond formation and functional group interconversion at the anode and cathode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.