Abstract

Contextual modulations at primary stages of visual processing depend on the strength of local input. Contextual modulations at high-level stages of (face) processing show a similar dependence to local input strength. Namely, the discriminability of a facial feature determines the amount of influence of the face context on that feature. How high-level contextual modulations emerge from primary mechanisms is unclear due to the scarcity of empirical research systematically addressing the functional link between the two. We tested (62) young adults' ability to process local input independent of the context using contrast detection and (upright and inverted) morphed facial feature matching tasks. We first investigated contextual modulation magnitudes across tasks to address their shared variance. A second analysis focused on the profile of performance across contextual conditions. In upright eye matching and contrast detection tasks, contextual modulations only correlated at the level of their profile (averaged Fisher-Z transformed r = 1.18, BF10 > 100), but not magnitude (r = .15, BF10 = .61), suggesting the functional independence but similar working principles of the mechanisms involved. Both the profile (averaged Fisher-Z transformed r = .32, BF10 = 9.7) and magnitude (r = .28, BF10 = 4.58) of the contextual modulations correlated between inverted eye matching and contrast detection tasks. Our results suggest that non-face-specialized high-level contextual mechanisms (inverted faces) work in connection to primary contextual mechanisms, but that the engagement of face-specialized mechanisms for upright faces obscures this connection. Such combined study of low- and high-level contextual modulations sheds new light on the functional relationship between different levels of the visual processing hierarchy, and thus on its functional organization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call