Abstract

This work examines the effects of photonically induced interband excitations from the d-band to states at the Fermi energy on thermophysical properties in noble metals. The change in the electron population in the d-band and the conduction band causes a change in electron heat capacity and electron-phonon coupling factor, which in turn impacts the evolution of the temperature after pulse absorption and electron thermalization. Expressions for heat capacity and electron-phonon coupling factor are derived for electrons undergoing both inter- and intraband transitions. In noble metals, due to the large d-band to Fermi energy separation, the contributions to electron heat capacity and electron-phonon coupling factor of intra- and interband transitions can be separated. At high absorbed laser fluences and pulse energies greater than the interband transition threshold, the interband and intraband contributions to thermophysical properties differ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.