Abstract
The main aim of this work is to study the respective contribution of the hard and soft blocks of a metal-ligand containing block copolymer to the self-healing behavior. To this aim, different block copolymers containing terpyridine were synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization. These block copolymers consisted of polystyrene as the hard block, n-butyl acrylate (BA) as soft block and terpyridine units as the ligand moiety placed at different locations in the soft block. These block copolymers were complexed with manganese(II) chloride to introduce transient crosslinks and, thus, self-healing behavior. Homopolymers with the hard and soft block only were also synthesized and tested. A quasi-irreversible crosslinking, i.e. by using nickel(II) nitrate, was performed in order to study the dynamics of the permanently (strongly) crosslinked network. Rheological master curves were generated enabling the determination of the terminal flow in these networks and the reversibility of the supramolecular interactions. Additionally, the macroscopic scratch healing behavior and the molecular mobility of the polymer chains in these supramolecular networks were investigated. A kinetic study of the scratch healing was performed to determine the similarities in temperature dependence for rheological relaxations and macroscopic scratch healing. In our previous work, we have explored the effect of strength of the reversible metal-ligand interaction and the effect of changing the ratio of hard to soft block. This work goes further in separating the individual contributions of the hard and soft blocks as well as the reversible interactions and to reveal their relative importance in the complex phenomenon of scratch healing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.