Abstract

The role of gravity waves for the momentum and heat budget of the atmosphere between approximately 70 and 110 km height is considered. Parameterization schemes for vertical gravity wave diffusivity, generalized Rayleigh friction, viscous force, heat conduction and kinetic energy dissipation are reviewed. Eddy diffusion parameterization and its relation to the gravity wave approach is also discussed and it is shown that principal similarities exist in both concepts, especially when irregular (stochastic) contributions to the perturbations are modeled. Special attention is paid to the dissipation of perturbation kinetic energy and its contribution to the heat budget of the mesopause region. It is concluded that the amount of energy which can be attributed to the part of the gravity wave spectrum contributing to generalized Rayleigh friction above the mesopause is of the order of 10% of the total perturbation energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call