Abstract

The evolution of cooperative behavior is a major area of research among evolutionary biologists and behavioral ecologists, yet there are few estimates of its heritability or its evolutionary potential, and long-term studies of identifiable individuals are required to disentangle genetic and nongenetic components of cooperative behavior. Here, we use long-term data on over 1800 individually recognizable wild meerkats (Suricata suricatta) collected over 30 years and a multigenerational genetic pedigree to partition phenotypic variation in three cooperative behaviors (babysitting, pup feeding, and sentinel behavior) into individual, additive genetic, and other sources, and to assess their repeatability and heritability. In addition to strong effects of sex, age, and dominance status, we found significant repeatability in individual contributions to all three types of cooperative behavior both within and across breeding seasons. Like most other studies of the heritability of social behavior, we found that the heritability of cooperative behavior was low. However, our analysis suggests that a substantial component of the repeatable individual differences in cooperative behavior that we observed was a consequence of additive genetic variation. Our results consequently indicate that cooperative behavior can respond to selection, and suggest scope for further exploration of the genetic basis of social behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call