Abstract

BackgroundUnderstanding a carbon budget from a national perspective is essential for establishing effective plans to reduce atmospheric CO2 growth. The national characteristics of carbon budgets are reflected in atmospheric CO2 variations; however, separating regional influences on atmospheric signals is challenging owing to atmospheric CO2 transport. Therefore, in this study, we examined the characteristics of atmospheric CO2 variations over South and North Korea during 2000–2016 and unveiled the causes of their regional differences in the increasing rate of atmospheric CO2 concentrations by utilizing atmospheric transport modeling.ResultsThe atmospheric CO2 concentration in South Korea is rising by 2.32 ppm year− 1, which is more than the globally-averaged increase rate of 2.05 ppm year− 1. Atmospheric transport modeling indicates that the increase in domestic fossil energy supply to support manufacturing export-led economic growth leads to an increase of 0.12 ppm year− 1 in atmospheric CO2 in South Korea. Although enhancements of terrestrial carbon uptake estimated from both inverse modeling and process-based models have decreased atmospheric CO2 by up to 0.02 ppm year− 1, this decrease is insufficient to offset anthropogenic CO2 increases. Meanwhile, atmospheric CO2 in North Korea is also increasing by 2.23 ppm year− 1, despite a decrease in national CO2 emissions close to carbon neutrality. The great increases estimated in both South Korea and North Korea are associated with changes in atmospheric transport, including increasing emitted and transported CO2 from China, which have increased the national atmospheric CO2 concentrations by 2.23 ppm year− 1 and 2.27 ppm year− 1, respectively.ConclusionsThis study discovered that economic activity is the determinant of regional differences in increasing atmospheric CO2 in the Korea Peninsula. However, from a global perspective, changes in transported CO2 are a major driver of rising atmospheric CO2 over this region, yielding an increase rate higher than the global mean value. Our findings suggest that accurately separating the contributions of atmospheric transport and regional sources to the increasing atmospheric CO2 concentrations is important for developing effective strategies to achieve carbon neutrality at the national level.

Highlights

  • Understanding a carbon budget from a national perspective is essential for establishing effective plans to reduce atmospheric ­CO2 growth

  • Regional difference in atmospheric ­CO2 trends The chemical transport model (CTM) modeling estimated that the global mean ­CO2 concentration rose by 2.05 ppm y­ear− 1 during 2000–2016, which is consistent with that computed from observations (Fig. 1a)

  • ­CO2 over South Korea, North Korea, and the globe atmospheric ­CO2 increase is greater than 2 ppm y­ ear− 1 in all regions and is more positively skewed, reaching a maximum value of 3 ppm y­ ear− 1 (Fig. 1b)

Read more

Summary

Introduction

Understanding a carbon budget from a national perspective is essential for establishing effective plans to reduce atmospheric ­CO2 growth. In this study, we examined the characteristics of atmospheric C­ O2 variations over South and North Korea during 2000–2016 and unveiled the causes of their regional differences in the increasing rate of atmospheric ­CO2 concentrations by utilizing atmospheric transport modeling. Results: The atmospheric ­CO2 concentration in South Korea is rising by 2.32 ppm ­year− 1, which is more than the globally-averaged increase rate of 2.05 ppm ­year− 1. More than 110 nations participating in the UNFCCC have committed to achieving carbon neutrality by 2050 (or 2060), including all East Asian countries, which are responsible for more than half of the global anthropogenic ­CO2 emissions [6, 7]. Understanding the characteristics of national carbon budgets and their impact on atmospheric C­ O2 changes is essential for establishing effective plans to achieve this goal

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call