Abstract
The input of phosphorus (P) through mineral aerosol dust deposition may be an important component of nutrient dynamics in tropical forest ecosystems. A new dust deposition calculation is used to construct a broad analysis of the importance of dust-derived P to the P budget of a montane wet tropical forest in the Luquillo Mountains of Puerto Rico. The dust deposition calculation used here takes advantage of an internal geochemical signal (Sr isotope mass balance) to provide a spatially integrated longer-term average dust deposition flux. Dust inputs of P (0.23 ± 0.08 kg ha−1 year−1) are compared with watershed-average inputs of P to the soil through the conversion of underlying saprolite into soil (between 0.07 and 0.19 kg ha−1 year−1), and with watershed-average losses of soil P through leaching (between 0.02 and 0.14 kg ha−1 year−1) and erosion (between 0.04 and 1.38 kg ha−1 year−1). The similar magnitude of dust-derived P inputs to that of other fluxes indicates that dust is an important component of the soil and biomass P budget in this ecosystem. Dust-derived inputs of P alone are capable of completely replacing the total soil and biomass P pool on a timescale of between 2.8 ka and 7.0 ka, less than both the average soil residence time (~15 ka) and the average landslide recurrence interval (~10 ka).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.