Abstract

The objective of this work was to study the influence of small variations in the chemical structure on the molecular dynamics of liquids using as models bis(cyclohexylmethyl) 2-methyl- and dicyclohexyl 2-methylsuccinate. The dielectric behavior of the low molecular weight liquids was studied over a wide range of frequencies and temperatures. The results show that the temperature dependence of the dielectric strengths, relaxation times, and shape parameters of the secondary and glass-liquid relaxations are very sensitive to the slight differences in the structures of the liquids. Significant changes take place in the dielectric strength of the β relaxation in the glass liquid transition. Moreover, the temperature dependence of the β relaxation exhibits Arrhenius behavior in the glassy state and departs from this behavior in the liquid state. Special attention is paid to the temperature dependence of low-frequency relaxations produced by the motion of a macrodipole arising from charges located near the liquid-electrode boundaries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call