Abstract

Abstract Contributions of convective gravity waves (CGWs) and orographic gravity waves (OGWs) to the Brewer–Dobson circulation (BDC) are examined and compared to those from resolved waves. OGW drag (OGWD) is provided by NCEP Climate Forecast System Reanalysis (CFSR), while CGW drag (CGWD) is obtained from an offline calculation of a physically based CGW parameterization with convective heating and background data provided by CFSR. CGWD contributes to the shallow branch of the BDC regardless of the season, while OGWD contributes to both the shallow and deep branches except for the summertime, when OGWs hardly propagate into the stratosphere. At 70 hPa, the annual-mean tropical upward mass fluxes from Eliassen–Palm flux divergence (EPD), OGWD, and CGWD are 68%, 7%, and 4% of the total mass flux, respectively. The tropical upward mass flux at 70 hPa shows an increasing trend during the time period from 1979 to 1998, with 28%, 18%, and 6% of the trend driven by EPD, OGWD, and CGWD, respectively. The width of the turnaround latitudes tends to narrow for the streamfunctions induced by OGWD and CGWD but tends to widen for that induced by EPD. The contributions of GWD from MERRA (MERRA-2) to the climatology and long-term trend of the BDC are 7% (7%) and 13% (4%), respectively, somewhat smaller than the contributions of CGWD plus OGWD, which are estimated from CFSR to be 12% and 20%, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call