Abstract

Quantifying the contributions of climate change and human activities to ecosystem evapotranspiration (ET) and gross primary productivity (GPP) changes is important for adaptation assessment and sustainable development. Spatiotemporal patterns of ET and GPP were estimated from 2000 to 2014 over North China Plain (NCP) with a physical and remote sensing-based model. The contributions of climate change and human activities to ET and GPP trends were separated and quantified by the first difference de-trending method and multivariate regression. Results showed that annual ET and GPP increased weakly, with climate change and human activities contributing 0.188 mm yr–2 and 0.466 mm yr–2 to ET trend of 0.654 mm yr–2, and–1.321 g C m–2 yr–2 and 7.542 g C m–2 yr–2 to GPP trend of 6.221 g C m–2 yr–2, respectively. In cropland, the increasing trends mainly occurred in wheat growing stage; the contributions of climate change to wheat and maize were both negative. Precipitation and sunshine duration were the major climatic factors regulating ET and GPP trends. It is concluded that human activities are the main drivers to the long term tendencies of water consumption and gross primary productivity in the NCP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call