Abstract

Inductively-coupled C(x)F(y) (y/x = 2.0-4.0) plasma systems were investigated to determine relationships between precursor chemistry, CF(n) radical-surface reactivities, and surface properties of deposited films. The contributions of CF(n) (n = 1, 2) radicals to film properties were probed via gas-phase diagnostics and the imaging of radicals interacting with surfaces (IRIS) technique. Time-resolved radical emission data elucidate CF(g) and CF(2)(g) production kinetics from the C(x)F(y) source gases and demonstrate that CF(4) plasmas inherently lag in efficacy of film formation when compared to C(2)F(6), C(3)F(8), and C(3)F(6) systems. IRIS data show that as the precursor y/x ratio decreases, the propensity for CF(n) scatter concomitantly declines. Analyses of the composition and characteristics of fluorocarbon films deposited on Si wafers demonstrate that surface energies of the films decrease markedly with increasing film fluorine content. In turn, increased surface energies correspond with significant decreases in the observed scatter coefficients for both CF and CF(2). These data improve our molecular-level understanding of CF(n) contributions to fluorocarbon film deposition, which promises advancements in the ability to tailor FC films to specific applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call