Abstract

Cation–π interactions are found to be an important noncovalent force in proteins. Collagen is a right-handed triple helix composed of three left-handed PPII helices, in which (X–Y-Gly) repeats dominate in the sequence. Molecular modeling indicates that cation–π interactions could be formed between the X and Y positions in adjacent collagen strands. Here, we used a host–guest peptide system: (Pro-Hyp-Gly) 3-(Pro-Y-Gly-X-Hyp-Gly)-(Pro-Hyp-Gly) 3, where X is an aromatic residue and Y is a cationic residue, to study the cation–π interaction in the collagen triple helix. Circular dichroism (CD) measurements and T m data analysis show that the cation–π interactions involving Arg have a larger contribution to the conformational stability than do those involving Lys, and Trp forms a weaker cation–π interaction with cationic residues than expected as a result of steric effects. The results also show that the formation of cation–π interactions between Arg and Phe depends on their relative positions in the strand. Moreover, the fluorinated and methylated Phe substitutions show that an electron-withdrawing or electron-donating substituent on the aromatic ring can modulate its π–electron density and the cation–π interaction in collagen. Our data demonstrate that the cation–π interaction could play an important role in stabilizing the collagen triple helix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.